
Preprint. Under review.

R2E-Gym: Procedural Environments and Hybrid Verifiers for
Scaling Open-Weights SWE Agents

Naman Jain1⋆ Jaskirat Singh2⋆ Manish Shetty1

Liang Zheng2 Koushik Sen1 Ion Stoica1

1UC Berkeley 2Australian National University

{naman jain@berkeley.edu jaskirat.singh@anu.edu.au}

Abstract

Improving open-source models on real-world SWE tasks (solving GITHUB
issues) faces two key challenges: 1) scalable curation of execution environ-
ments to train these models, and 2) optimal scaling of test-time compute.
We introduce R2E-Gym, the largest procedurally-curated executable gym
environment for training real-world SWE-agents, consisting of more than
8.1K tasks. R2E-Gym is powered by two main contributions: 1) SWEGEN: a
synthetic data curation recipe that enables scalable curation of executable
environments using test-generation and back-translation directly from com-
mits, thereby reducing reliance on human-written issues or unit tests. We
show that this enables more scalable training leading to PASS@1 of 34.4%
on SWEBENCH-VERIFIED benchmark with our 32B model. 2) Hybrid Test-
time Scaling: we next provide an in-depth analysis of two test-time scaling
axes; execution-based and execution-free verifiers, demonstrating that they
exhibit complementary strengths and limitations. Test-based verifiers suf-
fer from low distinguishability, while execution-free verifiers are biased
and often rely on stylistic features. Surprisingly, we find that while each
approach individually saturates around 42-43%, significantly higher gains
can be obtained by leveraging their complementary strengths. Overall, our
approach achieves 51% on the SWEBENCH-VERIFIED benchmark, reflecting a
new state-of-the-art for open-weight SWE agents and for first time being
competitive with proprietary systems such as o1 or sonnet w/ tools.

1 Introduction

Autonomous software engineering (SWE), aiming to solve real-world software engineering
problems such as GITHUB issues, has made significant progress in recent times (Wang et al.,
2024; Yang et al., 2024b). While LLM-based SWE-Agents have demonstrated remarkable
improvements, state-of-the-art performance is largely driven by proprietary models (An-
thropic, 2025; Jaech et al., 2024) — with open-models lagging behind (Xie et al., 2025).

Addressing this gap requires solving two fundamental challenges: First, scalable curation
of high-quality execution environments to train these models; and second, developing
efficient aggregation strategies to maximize test-time performance. While several bench-
marks for evaluating SWE-agents on GITHUB issues exist (Jimenez et al., 2023; Zhao et al.,
2024), scalable curation of high-quality training environments remains a challenging prob-
lem. For instance, while the training split from SWE-Bench (Jimenez et al., 2023) contains
output patches, it lacks executable environments. Pan et al. (2024) collect executable test
environments, but rely on human-written issues and test cases restricting sample-size.

In this paper, we introduce R2E-GYM, the largest procedurally curated environment for
training real-world SWE-agents — consisting of more than 8.1K problems, with executable
gym environments, unit tests, and natural-language task descriptions (§2). R2E-GYM
addresses both key challenges through two primary contributions (Figures 1a and 1b):

⋆ Equal Contribution. Project Page: https://r2e-gym.github.io

1

https://r2e-gym.github.io


Preprint. Under review.

(a) Synthetic Data (b) Hybrid Test-time Scaling (c) Open-weights SOTA Performance
Figure 1: Overview. In this paper, we introduce R2E-Gym, the largest gym environment
and training framework for training open-weight SWE agents. R2E-Gym is powered by two
main contributions: (a) SWEGEN: a synthetic data curation recipe for curating executable
training environments w/o relying on human tests and issues (§2). (b) Hybrid Inference
Time Scaling: showing that while both execution-based and execution-free verifiers elicit
inference-time gains; significantly better performance can be achieved by leveraging the
strengths of both (§4). (c) Overall, the final approach reflects SOTA performance for open-
weight SWE-agents, while also being competitive with some proprietary model baselines1.

Synthetic Data Enables More Scalable Training. We propose SWEGEN — a novel synthetic
data curation recipe that enables collection of a large number of executable training envi-
ronments without reliance on human-written pull requests (PRs) or unit tests. We show
that instead of using human-written PRs, good-quality execution environments can directly
be curated from commits through backtranslation (Li et al., 2023; Wei et al., 2023) and test
collection or generation (§2). Compared to PR-based data collection (Pan et al., 2024), this
approach enables more scalable data curation (Figure 1a) and agent-training, resulting in a
PASS@1 performance of 34.4% on the challenging SWEBENCH-VERIFIED benchmark.

Hybrid Inference Time Scaling. We next leverage R2E-GYM to investigate two comple-
mentary axes for scaling test-time compute (§4): 1) Execution-based verifiers that evaluate
patches through test cases (Xia et al., 2024b), and 2) Execution-free verifiers that assess
trajectories through learned models (Pan et al., 2024). While prior works have studied
these approaches in isolation, they lack a comprehensive analysis of their relative strengths
and weaknesses. We first present a unique and in-depth analysis of their working mech-
anisms, demonstrating that execution-free and execution-based methods actually exhibit
complementary strengths and weaknesses. We find two key insights (studied in §4.2): a)
Execution-based methods provide direct signals for patch correctness but struggle with dis-
criminating between solutions , and b) Execution-free verifiers provide better discrimination
but can be biased by other heuristics (e.g., agent thoughts) over the final patch. Based on
the above insights, we propose a hybrid scaling approach leveraging the strengths of both
methods. Surprisingly, while the performance of both execution-based and execution-free
methods plateaus around 42-43%, the hybrid approach yields significantly higher gains,
achieving a final performance of 51% on SWEBENCH-VERIFIED (Figure 1b and §4.3).

The key contributions of this paper are: 1) We introduce R2E-GYM, the largest procedu-
rally curated environment for training real-world SWE-agents, increasing the number of
executable environments by over 3 times. 2) We provide an in-depth analysis demonstrating
that execution-based and execution-free axes for scaling test-time compute exhibit comple-
mentary strengths and weaknesses. 3) Based on the above insights, we propose a hybrid
scaling approach that leverages the strengths of both methods, significantly improving
test-time performance. 4) Finally, we release an open-weights 32B model that achieves
51% on SWEBENCH-VERIFIED, reflecting a new state-of-the-art for open-weight SWE-agents,
while also for the first time demonstrating competitive or better performance compared to
commercial models (Fig. 1c), e.g., o1 (Jaech et al., 2024) and sonnet-3.5-v2 (Anthropic, 2024).

1Results with all open-weight models are reported with test-time scaling.

2



Preprint. Under review.

2 R2E-GYM: Procedural Synthetic Data Generation

Dataset (split) Repo? Executable? # Instances

APPS (Hendrycks et al., 2021) ✗ ✓ 10,000
R2E (Jain et al., 2024b) ✓ ✓ 246
SWE-Bench(train) (Jimenez et al., 2023) ✓ ✗ 19,008
SWE-Gym Raw (Pan et al., 2024) ✓ ✗ 66,894

SWE-Bench (test) (Jimenez et al., 2023) ✓ ✓ 2,294
SWE-Gym (Pan et al., 2024) ✓ ✓ 2,438

R2E-Gym-Subset (Ours) ✓ ✓ 4,578
R2E-Gym (Ours) ✓ ✓ 8,135

Table 1: Dataset Statistics. Comparing statistics
across different datasets curating executable train-
ing environments for SWE-agent training. R2E-
Gym refers to our full dataset, and R2E-Gym-
Subset refers to a filtered subset of tasks, with non-
overlapping repositories with SWE-Bench.

Table 2: Repo distribution for R2E-
Gym subset (no overlap with SWE-
Bench) used for training (refer §3).

Overview. SWE task collection methods (Jimenez et al., 2023) rely on human-written issues
and unit tests for problem statements and evaluation functions. However, this presents a
challenge for scaling data curation as size is limited by human-written PRs. To overcome this
limitation, we propose SWEGEN — a synthetic data curation recipe using backtranslation
and test generation. We procedurally generate environments using only commits from
GITHUB repositories, reducing reliance on both human-written issues and test cases.

Repository and Commit Curation. We use SEART GITHUB search2 to identify PYTHON
repositories with a large number of commits. Next, we extract commit history and associated
code changes for each repository. We filter relevant commits using a combination of rule-
based and LLM-based heuristics, identifying interesting code changes. For each relevant
commit, we next collect build scripts by semi-manually searching across dependency pins.
We expand our set of heuristics and installation procedure further in the Appendix A.

Test-Validation and Generation for Environment Collection. Following Jimenez et al.
(2023), we use the existing test cases in the curated commits to identify Fail→Pass (F2P) test
cases, i.e. test cases that fail in the original buggy commit and pass in the fixed commit. In
cases where the curated commits do not have associated tests, limiting the ability to use
them for training environments, we supplement such commits with automatically generated
Fail→Pass test-cases. Appendix A expands our test generation approach.

Backtranslation: Non-reliance on GITHUB Issues. Using the above steps, we collect a large
number of commits, associated build environments and F2P (Fail→Pass) test cases. Now, we
need to collect the problem statements associated with the commits. Prior works (Jimenez
et al., 2023; Pan et al., 2024) use human-written GITHUB issues as problem statements.
This inevitably cannot use the entire commit history since human-written issues are not
available for all commits. Here, following Li et al. (2023); Wei et al. (2023) we propose a
backtranslation approach to collect the problem statements associated with the commits.

However, naively back-translating code changes is quite noisy as models often generate
generic problem statements that do not capture the essence of the code changes. Instead, we
identify that human-written issues often contain failing tests and execution traces as part of
bug reports. We use this observation to collect high-quality problem statements by using
the F2P test-cases as part of the backtranslation prompt. Similar to existing works (Jain et al.,
2024b; Zhuo et al., 2024), we find that using test execution information allows generating
precise and directed problem statements. Please find prompts and examples in Appendix.

We collect over 8.1K problem statements using this approach (referred to as R2E-Gym).
We decontaminate this set by removing repositories overlapping with SWE-Bench test-set
repositories, obtaining 4578 problems (referred to as R2E-Gym-Subset) and use that across
all experiments unless specified otherwise. Table 1 shows the statistics of different datasets,
and Figure 2 and Figure 9 show the distribution of the repositories in R2E-Gym-Subset and

2https://seart-ghs.si.usi.ch/

3

https://seart-ghs.si.usi.ch/


Preprint. Under review.

Table 3: Resolve Rate (%) Comparison on SWEBENCH-VERIFIED and SWEBENCH-LITE bench-
marks. We observe that synthetic data curation (SWEGEN): allows our approach to scale
better across different model sizes. All experiments use the Qwen-2.5-Coder as base-models.

Model SWEBENCH-LITE SWEBENCH-VERIFIED
Size Base-model SWE-Gym Ours ∆ Base-model SWE-Gym Ours ∆

7B 1.0 (±1.0) 10.0 (±2.4) 11.0 (±0.8) +1.0 1.8 (±1.3) 10.6 (±2.1) 19.0 (±1.0) +8.4
14B 2.7 (±1.9) 12.7 (±2.3) 20.67 (±0.7) +7.97 4.0 (±1.6) 16.4 (±2.0) 26.8 (±1.4) +10.4
32B 3.0 (±1.4) 15.3 (±2.5) 23.77 (±0.8) +8.47 7.0 (±1.3) 20.6 (±2.1) 34.4 (±1.2) +13.8

R2E-Gym respectively. Notably, using our SWEGEN approach, we can collect over 2.5 times
more problems than relying on the data collection relying on GITHUB issues (Figure 1a).

3 Training SWE-Agents using R2E-GYM Environments

Agent Scaffolding. We design a minimal scaffold on top of OPENHANDS (Wang et al., 2024)
to experiment with agents for diverse SWE tasks. It uses a traditional REACT framework (Yao
et al., 2022) without any specialized workflow; equipping the LLM with only a bash terminal,
file editor, and search tool. Figure 16 depicts an example code editing trajectory.

Trajectory Collection and SFT Training. We next collect SFT trajectories using from R2E-
Gym environments. To avoid contamination, we only use a subset of R2E-Gym consisting
of repos with no overlap with the SWE-Bench dataset. The resulting subset (R2E-Gym-
Subset) consists of 4578 executable environments across 10 repositories (Figure 2). For each
task environment, we use SONNET-3.5-V2 with our agent scaffold and collect the successful
agent trajectories. Through this process, we collect 3321 trajectories from 2048 unique task
environments. We then use these trajectories to train our agent via supervised fine-tuning
on agent thoughts and actions. For training, we use LLaMA-Factory (Zheng et al., 2024)
and Qwen-2.5-Coder models (7B, 14B, 32B) as our base models. For detailed experiment
configuration and hyperparameters, please refer to Appendix B.

3.1 Results and Analysis

Comparison to open-weight SWE-Agents across Model Scales. We report PASS@1 of R2E-
Gym trained models on the SWEBENCH-VERIFIED and SWEBENCH-LITE benchmarks in Table 3.
We also report comparisons with recently proposed SWE-Gym (Pan et al., 2024), which
is most closest to our work. As seen in Table 3, we find that our approach enables better
scaling for training SWE-agents across all model sizes. For instance, on SWEBENCH-VERIFIED,
for the same base-model type and scale, our 32B model significantly improves the PASS@1
performance by 14%; pushing the final performance from 20.6 (SWE-Gym) to 34.4%.

Scaling with Number of Trajectories. We investigate the relationship between training
samplesize (number of trajectories) and agent performance in Figure 2. We evaluate 14B and
32B models trained with trajectory counts ranging from 100 to 3, 200. Our findings indicate
that performance improves with increasing trajectory count, though with diminishing
returns for both models. Notably, the 14B model begins to saturate at approximately 800
samples, while the 32B model still shows improvements, likely due to its larger capacity.
These results extend the findings of Pan et al. (2024), who studied dataset scaling up to ∼ 500
samples. Our analysis demonstrates that while performance does improve with increasing
samplesize, the rate of improvement diminishes or even plateaus for smaller models.

Real vs Synthetic Problem Statements. The R2E-Gym approach enables us to generate
problem statements without relying on human-written descriptions and test cases, offering
greater scalability. We compare the performance of models trained on real GitHub issues
versus our synthetic problem statements (collecting 400 trajectories from both sets). Remark-
ably, models trained on synthetic data achieve nearly identical performance (27.8% PASS@1)
to those trained on real data (28.0%). This finding validates the efficacy of our synthetic
data generation methodology, demonstrating that procedurally generated environments
can match the training value of real-world examples while providing scalability.

4



Preprint. Under review.

Figure 2: PASS@1 scaling curve with in-
creasing number of training samples. Per-
formance improvement with more training
samples, enabled by SWEGEN approach.

Ablation Config PASS@1 (%)

Adding Thoughts With 34.4
Without 30.4

Real vs. Synthetic Real 28.0
Synthetic 27.8

Figure 3: Top. Using thoughts in REACT
agent trajectories leads to significant per-
formance improvements. Bottom. Using
SWEGEN synthetic generated issues and
test cases achieves similar performance as
real-world issues (400 trajectories for both
real & synthetic in above) while providing
better scalability during data collection.

Explicit Thought Traces are Important. During SFT we use both the agent’s thought
processes and actions as training targets. Models trained with thought demonstrations
achieve significantly better performance compared to those trained without (34.2% vs 30.4%
in Table 3). This suggests that exposing the model to step-by-step reasoning processes is
necessary for reliable problem-solving in complex environments.

4 Efficient Inference Time Scaling With Hybrid Verifiers

We utilize R2E-Gym (§2) for inference-time scaling experiments with coding agents. In
§4.1, we explore different axes for scaling test-time compute, focusing on two distinct
approaches: 1) Execution-based Verifiers and 2) Execution-free Verifiers. We analyze the
relative strengths and weaknesses of each approach, demonstrating their complementary
nature (§4.2). Based on this insight, we propose a hybrid approach that leverages the
strengths of both, significantly improving test-time performance (§4.3). Finally, we provide
detailed ablations and analysis, examining critical design choices for our approach (§4.4).

4.1 Exploring Different Axes for Training Verifiers

Given an input task description D, a set of agent trajectories {Ti}K
i=1 and candidate patch

outputs {Pi}K
i=1, our objective is to build a verifier that assigns scores S = {si}K

i=1 to rank
the outputs. To this end, we investigate two types of verifiers:

Execution-Based Verifiers. We train a specialized testing-agent that generates reproduction
test cases to determine whether a candidate patch resolves the issue (i.e., whether the patch
passes the generated test suite). Additionally, following Xia et al. (2024b), we leverage
existing regression tests to filter out patches that fail to maintain backward compatibility.
Our execution-based (EB) verifier thus comprises two components: 1) a testing-agent that
generates targeted tests to evaluate bug fixes, and 2) a regression test filter that eliminates
patches that compromise existing functionality. Specifically, we train the testing-agent (using
QWEN-CODER-32B as base-model) to generate a comprehensive test script containing M = 10
diverse tests that cover various inputs, corner cases, etc.. See Appendix D for example
generated tests. The execution-based score sEB

k for each each patch Pk is then computed as,

sEB
k =

TestScorek, if RSk = max
j∈[1,K]

RSj,

0, otherwise,
; where TestScorek = ∑

i
Pass(Pk, Testi) (1)

where RSk refers to the regression test score for the kth patch and helps select the patches
with the highest regression test scores (Xia et al., 2024b). TestScorek is simply the sum of the
number of passing tests for each patch Pk. Please refer to Appendix §C for further details.

Notably, unlike zero-shot test generation with Agentless (Xia et al., 2024b), our testing
agent interacts with the environment to examine existing test cases and generates new

5



Preprint. Under review.

Figure 4: Left. BEST@K with increasing number of editing-agent rollouts. Inference-time
scaling improves final performance for both execution-based and execution-free verifiers.
Hybrid Verifier combining execution-based and execution-free verifiers provides signifi-
cantly superious scaling. Right. BEST@K with increasing number of testing-agent rollouts.
Increasing test-agent rollouts also improves final performance and can provide more com-
pute efficient scaling than naively increasing only editing-agent rollouts.

Table 4: Performance of various models/methods on SWE-Bench Verified.
Method Model Type Verified

Proprietary Models

Agentless-1.5 (Xia et al., 2024b) GPT-4o Pipeline 34.0
Agentless (Xia et al., 2024b) O1 Pipeline 48.0
Claude + Tools Claude-3.6-Sonnet Agent 49.0
Agentless-1.5 (Xia et al., 2024b) Claude-3.6-Sonnet Pipeline 50.8
OpenHands (Wang et al., 2024) Claude-3.6-Sonnet Agent 53.0
Claude + Tools Claude-3.7-Sonnet Agent 62.3
Claude + Tools (Best@Any) Claude-3.7-Sonnet Agent 70.3

Open-source Models

SWE-SynInfer (Ma et al., 2024) Lingma-SWE-GPT-72B Agent 30.2
SWE-Fixer (Xie et al., 2025) SWE-Fixer-72B Pipeline 30.2
SWE-Gym (BEST@16 w/ Verifier) (Pan et al., 2024) SWE-Gym-32B Agent 32.0
SWE-RL (BEST@500 w/ Tests) (Wei et al., 2025) SWE-RL-70B Pipeline 41.0
Agentless (Xia et al., 2024b) DeepSeek-R1 Pipeline 49.2

R2E-Gym (Ours) (PASS@1) R2E-Gym-32B Agent 34.4
R2E-Gym (Ours) (BEST@16 w / Hybrid) R2E-Gym-32B Agent 49.4
R2E-Gym (Ours) (BEST@26 w / Hybrid) R2E-Gym-32B Agent 51.0

tests informed by these examples with execution feedback. We demonstrate that this
environment-aware approach provides additional benefits over zero-shot methods in §4.4.

Execution-free Verifiers. We next train execution-free (EF) verifiers for selecting the best
trajectory from a set of sampled trajectories from the code-editing agent (§3). In particular,
following (Pan et al., 2024), given task description D, agent-trajectory T (sequence of
thought, action, and observations) and output patch P , we finetune a Qwen2.5-Coder-14B
model to predict YES and NO tokens to determine correctness of a trajectory using SFT on
correct and incorrect trajectories. The execution-free score is then computed by normalizing
the relative probability of YES token as sEF = P(YES)/(P(YES) + P(NO)), where P(YES) and
P(NO) are estimated through log-probabilities of corresponding token predictions.

4.2 Comparative Analysis of Execution-Based and Execution-Free Verifiers

Experimental Methodology. We evaluate verifier performance using the BEST@K metric,
which quantifies each verifier’s ability to identify correct patches from multiple candidates.
Specifically, given K trajectories, the BEST@K metric represents the percentage of problems
where the verifier successfully selects the correct patch using its scoring mechanism. For our
experiments, we sample 1 trajectory at temperature T = 0 and 25 trajectories at temperatures
T = 0.8 and T = 0.9 from the R2E-Gym-32B model on SWEBENCH-VERIFIED problems. These
trajectories achieve PASS@26 =64.4% (Figure 14). Next, we sample 7 tests using our testing

6



Preprint. Under review.

agent at temperature T = 0.8. When generating tests, the test agent is provided a fixed
in-context example (from Django) showing sample starter code and format for writing test
cases. We empirically find that use of an incontext example is useful for improving output
formatting and lacking domain knowledge in the base LM; improving test generation for
∼ 2% problems. Please see Listing C.1 for further details and incontext starter code.

Both verifiers elicit inference time gains. Figure 4 illustrates the BEST@K performance of
both verifier types on the SWEBENCH-VERIFIED benchmark as a function of number of editing
agent rollouts. Both execution-based and execution-free verifiers demonstrate substantial
performance improvements with increased number of rollouts. However, BEST@K rate
quickly plateaus for both methods, converging similarly to 43.7% and 42.8% respectively.

Limited Distinguishability in Execution-Based Verifiers. Recall that these verifiers out-
put scores based on test pass counts and thus cannot differentiate between patches with
identical test pass-rates, limiting their discriminative capacity. We study this discriminative
capability from tests generated by our 32B testing agent, prompted SONNET-3.5-V2 model,
and Agentless-1.5 reproduction tests (Xia et al., 2024b)3 on a subset of SWEBENCH-VERIFIED
problems. Figure 5 (left) presents the problem density distribution for distinguishability
rate, i.e., the proportion of tests that successfully differentiate between top-ranked correct
and incorrect patches. The results demonstrate that for the majority of problems, less than
20% of tests provide discriminative signal, constraining the re-ranking. Figure 6 additionally
depicts that most generated tests either do not reproduce the bug (high Pass→Pass values
in 6-left) or do not pass ground truth patches (high Fail→Fail values in 6-middle) primarily
due to bugs or exceptions in the generated test cases.

Vulnerability to Test Toxicity. Following (Chen et al., 2022), we examine the prevalence
of toxic tests, i.e., tests that pass incorrect patches but fail correct patches. Figure 5 (right)
illustrates the distribution of toxic test rates across different test generation approaches.
While toxic tests are generally rare, we find that for a small but significant subset of problems,
testing agents generate toxic tests (up to 10% of total tests) that can erroneously rank incorrect
patches above correct ones, undermining the reliability of execution-based verification.

Figure 5: Analyzing limitations of execution-based verifiers. Left: Problem Probability
Distributions for distinguishability rates depicting weak discrimination capabilities of tests.
We observe that for the majority of problems, less than 20% of tests provide discriminative
signal, constraining the re-ranking ability of test-based agent. Right: Distributions for
toxicity rates showing (rare) generation of toxic tests. We find that execution-based verifiers
are also vulnerable to (rare) generation of toxic tests (tests that pass incorrect patches but
fail correct patches); which can undermine the reliability of execution-based verifiers.

Execution-Free Verifiers can rely on heuristics. We next study the workings and limitations
of execution-free verifiers. In particular, we first perform quantitative ablation studies,
studying the impact of different trajectory components (e.g., output patch, agent thoughts) to
verifier performance. To this end, we train multiple execution-free verifiers (§4.1) excluding
different trajectory components while training the verifier. Results are shown in Figure 7-a.
We find that agent thoughts play a considerable role in determining the verifier performance.
Surprisingly, the final BEST@26 drops from 42.8% to 37.6% when we remove the trajectory
from the verifier input (i.e., only use the final patches). This means that while patch alone is

3We utilize test cases from the official artifacts repository (Xia et al., 2024a).

7



Preprint. Under review.

Figure 6: Problem Probability Distributions for Pass→Pass, Fail→Fail, and Fail→Pass
generated test fractions for various approaches. We identify a large fraction of generated
tests either do not reproduce the bug (left) or do not even pass the correct solution (middle).

Method Accuracy (%) Best@26 (%)

Final Patch + Traj. 71.82 42.8
Patch Only 68.01 37.6
Traj. - Thoughts 68.77 41.4

(a) Impact of Patch & Thoughts on
execution-free verifier. Patch alone
reduces performance, indicating that
model relies on other heuristics (e.g.,
agent thoughts) for reranking; which
can be misleading (see part-b: right).

1. Successfully reproduced the issue
2. Implemented a fix [...]
4. Ensured edge cases are handled
5. Maintained backward compatibility [...]
<function=finish>submit</function> [...]

Great! The fix works. Let's see what we did to fix the issue :
1. We identified that the original code was failing because it was trying to use

the `.inverse()` method directly on permutations, which [...]

(b) Top two attention windows while predicting YES
for an incorrect trajectory. We find that focusing on
heuristics (agent thoughts) can mislead the verifier.

Figure 7: Quantitative and qualitative analysis on limitations of execution-free verifiers.
We perform two experiments: a) Quantitative ablations on the impact of output patch on
verifier performance; showing that execution-based verifiers rely on other heuristics (e.g.,
agent thoughts) over the final patch. b) Qualitative visualization analyzing top k = 2 sliding
windows with highest mean attention score while predicting output token YES (§4.2) for an
incorrect agent trajectory (sympy sympy-24443: SWE-Bench (Yang et al., 2024b)). Focusing
on heuristics (e.g., agent thoughts) can be misleading, and the verifier predicts the trajectory
as correct. Visualizations are condensed for space. Please refer to the Appendix for further
visualizations and results.

responsible for determining the correctness, execution-free verifiers heavily rely on trajectory
features, such as agent thoughts, to make predictions.

To further investigate this phenomenon, we also perform an attention analysis trying to
visualize parts of the input trajectory which are most relevant while predicting the output
success with execution-free verifiers. In particular, we perform a sliding window search
over the input trajectory, and compute the mean attention score over the tokens in the
window when predicting the final output token (YES: correct, NO: incorrect). Figure 7 (right)
illustrates the top two windows receiving the highest attention scores, demonstrating that
verifiers disproportionately attend to agent thoughts. This can be misleading since the
verifier can use these sentiment signals in these thoughts as proxies for correctness rather
than evaluating the technical merits of the solution (i.e. the output patch).

4.3 Hybrid Inference Time Scaling

Combining the verifier strengths. Given the analysis from §4.2, we can summarize two key
insights: 1) Execution-based approach provides direct signal for patch correctness through
execution but suffers from lack of distinguishing tests 2) Execution-free approach offers
better distinguishability between patches through a continuous reward score sEF but can be
biased to pay more attention to heuristics (e.g., agent thoughts) over final output patch.

Given the above insights, we thus propose a hybrid verifier that leverages the strengths of
both approaches. Particularly, we define the hybrid verifier with score sH

k as,

sH
k = Topn(s

EF
k ) + sEB

k , where Topn(s
EF
k ) =

{
sEF

k , if sEF
k is among the top n scores,

−∞, otherwise.
(2)

8



Preprint. Under review.

where sEB
k provides execution-feedback, sEF

k provides distinguishability in case of a tie with
execution-based test scores (as sEF

k provides a continuous score between 0 and 1), and Topn
restricts hybrid verifier to only consider the top verifier ranked patches. In practice, we
perform regression filtering after the top-n filtering to ensure non-zero scores.

Main Results. Results are shown in Tab. 4 and Fig. 4. While both execution-based and
execution-free methods rapidly reach performance plateaus with increasing agent rollouts
(saturating at ∼ 43%), our hybrid approach demonstrates substantially superior scaling
properties, yielding significant performance improvements (additional 7-8%); achieving a
BEST@26 performance of 51% on the challenging SWEBENCH-VERIFIED benchmark.

Comparison to Open Systems. The proposed approach significantly outperforms other
open-weight alternatives; reflecting a new state-of-the-art in this domain. Among other
generalist-agent methods, SWE-Gym (Pan et al., 2024) recently achieves a BEST@16 per-
formance of 32.0%. Similarly, concurrent work (Wei et al., 2025) recently achieved 41.0%
using RL and BEST@500 (using Agentless). In contrast, despite mainly relying on supervised
fine-tuning for training, our proposed approach achieves a PASS@1 itself of 34.4% with
BEST@26 performance of 51.0% — achieving strong performance improvements through
simply more scalable data curation (§2) and better test-time scaling (Figure 4).

4.4 Ablation Studies on Hybrid Verification Design

Figure 8: Ablation Study on Hybrid Verifier. We find three
key insights: 1) While both execution-based and execution-
free verifiers saturate around 42-43%, the hybrid approach
yields significantly higher test-time gains (51%). 2) Regres-
sion tests alone are insufficient for hybrid scaling — achiev-
ing only 47.4% aggregation performance. 3) Agentic vs
Agentless: training a specialized testing agent is important
improving the performance from 48.8% to 51%.

Variation with Test-Agent Rollouts. As in 4.2, execution-based test generation can suffer
from a lack of distinguishing tests. One approach to address this, is to sample more test-
agent rollouts. We quantify this effect in Figure 4 (right). We observe that increasing number
of test-agent rollouts consistently helps improve performance with our hybrid approach.

Compute-Efficient Rollouts. Figure 4 (right) illustrates the BEST@K performance as a
function of both test-agent and code-editing agent rollout counts. Interestingly, we find that
sampling more test-agent rollouts can provide more compute optimized inference-scaling
over naively sampling more editing-agent rollouts. For instance, increasing the number of
editing-agent rollouts from 16 to 21 improves the BEST@K performance from 47.6% to 48.4%.
In contrast, simply sampling 5 more test-rollouts can yield better gains (BEST@K 49.3%).4

Regression Tests Alone are Insufficient. Our execution-based verification framework inte-
grates both regression and generated reproduction tests. Figure 5 (right) isolates the impact
of regression tests alone on the final performance. While regression tests alone improve
performance from 42.9% to 47.4%, using generated tests further enhances performance to
51.0%, demonstrating that both test types provide essential and complimentary signals.

Agentic vs Agentless Tests. A distinguishing feature of our approach is to train a specialized
agent for test-generation; instead of the zero-shot approach from Xia et al. (2024b). To evalu-
ate this design choice, we conducted a controlled comparison using official Agentless tests
from their released artifact (Xia et al., 2024a) within our hybrid verification framework on the
SWEBENCH-VERIFIED benchmark. Figure 5 (right) demonstrates that while Agentless tests
provide meaningful performance improvements, our agent-generated tests yield superior
results (51.0% versus 48.8%), validating our agent-based approach to test generation.

4Note that test-agent rollouts are also usually considerably cheaper than editing-agent rollouts.

9



Preprint. Under review.

Role of Topn. We evaluate the impact of the Topn filtering mechanism introduced in Equa-
tion (2). Figure 5 (right) shows that this selective application strategy improves performance
from 49.8% to 51.0%. This improvement likely stems from mitigating the impact of toxic tests
(§4.2) by restricting their application to higher-quality patches (identified via execution-free
reward scores sEF

k ), thereby enhancing the reliability of the verification process.

5 Related Work

Programming Agents. Recent work on GITHUB issue resolution includes SWE-agent (Yang
et al., 2024b), Autocoderover (Zhang et al., 2024b), OpenHands (Wang et al., 2024), Agent-
Less (Xia et al., 2024b), Moatless Orwall (2024). All of them rely on proprietary models due
to a lack of datasets and open-weight models -— a gap our work addresses.

Agent Training Environments. Existing SWE agent environments have key limitations:
SWE-Bench (Jimenez et al., 2023) lacks executable training environments, R2E (Jain et al.,
2024b) offers only 246 instances with function completion. SWE-Gym (Pan et al., 2024)
collects executable GITHUB environments similar to us but rely on human-written issues
and test cases. Synthetic data generation has been studied in various domains but our
work is the first to apply it for executable GITHUB environment collection. We use back-
translation (Li et al., 2024) and test-generation in SWEGEN approach. Please see Long et al.
(2024) for a comprehensive survey on synthetic data generation methods.

SWE-Agent Training. Ma et al. (2024) and Xie et al. (2025) train on synthetic code editing
tasks. Pan et al. (2024) study SFT on agent trajectories and inference scaling similar to our
work. Wei et al. (2025) explores reinforcement learning on large scale data collected from
real-world GITHUB issues without execution feedback.

Verifiers for SWE-Coding Tasks. Various works have explored use of verifiers for SWE tasks.
AgentLess (Xia et al., 2024b) used majority voting to select the best patch from multiple
agents. Agentless-1.5 relied on reproduction and regression tests to verify the correctness
of generated patches. Zhang et al. (2024a) proposed multi-agent commitee-review (LLM
judge) to select the best patch from multiple agents. Pan et al. (2024) proposed trajectory
verifiers to re-rank the generated patches based on LLM score.

Verifiers for General Coding Tasks. Various works have explored the use of verifiers for
general coding tasks on isolated puzzles (HumanEval (Chen et al., 2021)), interviews (Jain
et al., 2024a), and competition or olympiad problems (Hendrycks et al., 2021; Li et al.,
2022) Gu et al. (2024) showed that LLM judges perform poorly on checking correctness of
generated code. Chen et al. (2022); Ridnik et al. (2024); Key et al. (2022); Zhang et al. (2023a)
study how test generation can be used to re-rank the generated code samples. Inala et al.
(2022); Zhang et al. (2023b); Ni et al. (2023) employ neural code re-ranker models.

In this work, we extend these lines of work by first presenting novel insights on challenges
and opportunities for both execution-based and execution-free approaches in SWE-
Coding. Using these insights, we also propose a novel hybrid approach that effectively
combines their strengths to achieve better performance (51.0% on SWEBENCH-VERIFIED).

6 Conclusion

In this paper, we introduce R2E-Gym, the largest gym environment and training framework
for scaling open-weight SWE agents. We share two key insights: 1) Synthetic data curation
can enable more scalable training on SWE tasks. 2) Hybrid-test time scaling: different axis
for test-time scaling (execution-based testing agents and execution-free verifiers) exhibit
complementary strengths; which can be leveraged to achieve significantly higher test-time
gains. Overall, our final approach achieves 51% on SWE-Bench Verified, reflecting a new
state-of-the-art for open-weight SWE agents, while also for first-time showing competitive
performance with some proprietary models. We hope that our work can offer unique
insights for scaling open-source SWE-agents on real-world applications.

10



Preprint. Under review.

Acknowledgement

N. Jain and M. Shetty are supported by NSF grants CCF:1900968, CCF:1908870, and by
SKY Lab industrial sponsors and affiliates. This work is additionally supported by the R2E
OpenPhilanthropy grant.

11



Preprint. Under review.

References
Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin,

and Song Wang. Swe-bench+: Enhanced coding benchmark for llms. arXiv preprint
arXiv:2410.06992, 2024. 19

Anthropic. Raising the bar on SWE-bench Verified with Claude 3.5 Sonnet. https://www.
anthropic.com/research/swe-bench-sonnet, 2024. 2

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/claude-3-7-sonnet,
February 2025. 1

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou,
and Weizhu Chen. Codet: Code generation with generated tests. arXiv preprint
arXiv:2207.10397, 2022. 7, 10

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Eval-
uating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.
10

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers
to solve math word problems. arXiv preprint arXiv:2110.14168, 2021. 21

Alex Gu, Wen-Ding Li, Naman Jain, Theo X Olausson, Celine Lee, Koushik Sen, and
Armando Solar-Lezama. The counterfeit conundrum: Can code language models grasp
the nuances of their incorrect generations? arXiv preprint arXiv:2402.19475, 2024. 10

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with apps. NeurIPS, 2021. 3, 10

Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andres Codas, Mark Encarnación, Shu-
vendu Lahiri, Madanlal Musuvathi, and Jianfeng Gao. Fault-aware neural code rankers.
Advances in Neural Information Processing Systems, 35:13419–13432, 2022. 10

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card.
arXiv preprint arXiv:2412.16720, 2024. 1, 2

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contami-
nation free evaluation of large language models for code. arXiv preprint arXiv:2403.07974,
2024a. 10

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e:
Turning any github repository into a programming agent environment. In ICML 2024,
2024b. 3, 10

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
arXiv preprint arXiv:2310.06770, 2023. 1, 3, 10

Darren Key, Wen-Ding Li, and Kevin Ellis. I speak, you verify: Toward trustworthy neural
program synthesis. arXiv preprint arXiv:2210.00848, 2022. 10

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason We-
ston, and Mike Lewis. Self-alignment with instruction backtranslation. arXiv preprint
arXiv:2308.06259, 2023. 2, 3

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason E
Weston, and Mike Lewis. Self-alignment with instruction backtranslation. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=1oijHJBRsT. 10

12

https://www.anthropic.com/research/swe-bench-sonnet
https://www.anthropic.com/research/swe-bench-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://openreview.net/forum?id=1oijHJBRsT
https://openreview.net/forum?id=1oijHJBRsT


Preprint. Under review.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022. 10

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang.
On llms-driven synthetic data generation, curation, and evaluation: A survey. arXiv
preprint arXiv:2406.15126, 2024. 10

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen
Liu, Binhua Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-
process-centric language model for automated software improvement. arXiv preprint
arXiv:2411.00622, 2024. 6, 10

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and
Xi Victoria Lin. Lever: Learning to verify language-to-code generation with execution. In
International Conference on Machine Learning, pp. 26106–26128. PMLR, 2023. 10

A. Orwall. Moatless tool. https://github.com/aorwall/moatless-tools, 2024. Accessed:
2024-10-22. 10, 19

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym, 2024. URL
https://arxiv.org/abs/2412.21139. 1, 2, 3, 4, 6, 9, 10, 21

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From
prompt engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024. 10

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai
software developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024. 1, 4, 6, 10,
19

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source
code is all you need. arXiv preprint arXiv:2312.02120, 2023. 2, 3

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang,
Daniel Fried, Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing
llm reasoning via reinforcement learning on open software evolution. arXiv preprint
arXiv:2502.18449, 2025. 6, 9, 10

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: De-
mystifying llm-based software engineering agents. https://github.com/OpenAutoCoder/
Agentless, 2024a. 7, 9

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demysti-
fying llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024b. 2, 5,
6, 7, 9, 10

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025. 1, 6, 10

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu
Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong
Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a. 21

13

https://github.com/aorwall/moatless-tools
https://arxiv.org/abs/2412.21139
https://github.com/OpenAutoCoder/Agentless
https://github.com/OpenAutoCoder/Agentless


Preprint. Under review.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated
software engineering. arXiv preprint arXiv:2405.15793, 2024b. 1, 8, 10

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.03629, 2022. 4, 19

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesiz-
ing algorithmic programs with generated oracle verifiers. arXiv preprint arXiv:2305.14591,
2023a. 10

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh RN, Tian Lan, Lei
Li, Renze Lou, Jiacheng Xu, et al. Diversity empowers intelligence: Integrating expertise
of software engineering agents. In The Thirteenth International Conference on Learning
Representations, 2024a. 10

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-tau Yih, Daniel Fried, and
Sida Wang. Coder reviewer reranking for code generation. In International Conference on
Machine Learning, pp. 41832–41846. PMLR, 2023b. 10

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover:
Autonomous program improvement. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 1592–1604, 2024b. 10

Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé,
and Alexander M Rush. Commit0: Library generation from scratch. arXiv preprint
arXiv:2412.01769, 2024. 1

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational
Linguistics. URL http://arxiv.org/abs/2403.13372. 4, 19, 20, 21

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench:
Benchmarking code generation with diverse function calls and complex instructions.
arXiv preprint arXiv:2406.15877, 2024. 3

14

http://arxiv.org/abs/2403.13372


Preprint. Under review.

A Dataset Details

Figure 9: Repo distribution for our complete R2E-Gym dataset consisting of 8135 instances.

Commit Filtering Heuristics. Our commit filtering approach employs multiple heuristics to
identify high-quality bug fixes and improvements suitable for training data. We particularly
filter for small scoped changes, prioritizing non-documentation updates, and correlated
code and test matches. We perform this filter at both line and AST entity level. To ensure
consistency and quality, we employ specific thresholds in our filtering process:

• Maximum of 5 non-test files modified in a single commit
• Maximum of 100 edited lines across all non-test files
• Maximum patch length of 2000 characters to ensure focused changes
• No more than 1 deleted entity in non-test files
• Maximum of 3 added entities in non-test files
• Maximum of 3 edited entities in non-test files
• No more than 10 statement-level changes to maintain tractability

Additionally, we use LLM as a judge filter to further refine our dataset.

Repository Installation. Installing historical commits from GitHub repositories presents
significant challenges due to evolving dependency requirements and API changes. We use
a Docker-based approach with a search-based dependency resolution strategy to create
reproducible environments for each commit. Our installation process follows these steps:

1. Extract dependency information from requirements.txt, setup.py, etc
2. Iteratively identify potential version conflicts and compatibility issues
3. Generate multiple candidate dependency configurations
4. Test each configuration until a working environment is found

This process is semi-manual and challenging to scale and we aim to rely more on LLMS in
the future. Example installation scripts test multiple dependency combinations sequentially,
exiting on the first successful build:

build_and_check_pandas (){
local python_version=$1;
local numpy_version=$1;
local setuptools_version=$3$
...

15



Preprint. Under review.

}

# Attempt with first configuration
if build_and_check_pandas "3.7" "1.17.*" " <0.30" "62.*" "0.23"; then

echo "[INFO]␣First␣combo␣succeeded.␣Exiting."
exit 0

fi

# Attempt with second configuration
if build_and_check_pandas "3.8" "1.20.*" " <0.30" "62.*" "0.23"; then

echo "[INFO]␣Second␣combo␣succeeded.␣Exiting."
exit 0

fi

# Attempt with third configuration
if build_and_check_pandas "3.10" "1.26.*" "===3.0.5" "62.*" "0.23"; then

echo "[INFO]␣Third␣combo␣succeeded.␣Exiting."
exit 0

fi

Listing 1: Example installation script excerpt

This approach allows us to create working environments for historical commits, enabling
execution-based validation of our dataset.

Test Generation. We use an Agentless-like reproduction test generation approach. A key
difference is that we use the ground truth patch as context when generating the tests.

Issue Generation. As discussed in the main paper, we use backtranslation to generate
synthetic issues for commits that lack human-written GitHub issues. Our approach lever-
ages both the code changes in the commit and the test execution results to create realistic,
informative issue descriptions. The issue generation process follows these steps:

1. Extract failing test functions from the execution results
2. Analyze test outputs to identify error messages and expected behaviors
3. Provide the LLM with commit message, code patch, and test execution results
4. Guide the LLM to generate a concise, informative issue that describes the bug

without revealing the solution

For each commit, we extract and utilize specific components:

• Commit metadata: Hash and commit message provide context about the change
• Code patches: We separate non-test file changes (showing what was fixed) from

test file changes (showing how to verify the fix)
• Test execution: We include both old (failing) and new (passing) executions
• Test functions: We extract relevant test functions that demonstrate the bug
• Assertion failures: We extract and format the failing assertions from the old commit

to show error details

The prompt construction carefully organizes these components to give the LLM sufficient
context while focusing attention on the most relevant information for issue generation. We
carefully design our prompting strategy to ensure the generated issues resemble human-
written ones, focusing on clarity, naturalness, and providing sufficient information for
understanding the bug.

# Build the complete prompt with all components
def get_prompt(commit , execution_result , issues=None):

# Include commit hash and message
# Include commit patch (non -test files)
# Include test file changes

16



Preprint. Under review.

# Include execution results from old and new commits
# Include improved test functions
# Include test function code
# Include assertion failures
# Include example issues and instructions

Listing 2: Issue generation code structure

The template below shows our prompt guidelines:

As you are trying to generate synthetic issues , you will follow these
guidelines:

1. Keep the issue concise and informative.
2. Describe the failing test , including the input that causes the failure

, the nature of the failure , and the expected behavior. Do NOT
mention test functions or files directly.

3. Do not reveal the solution to the problem in the issue. Only describe
the bug and the expected behavior.

4. If there are multiple failing tests , focus on the most informative one
or a subset that best describes the general nature of the failure.

5. Describe the expected output of the failing test:
- For errors , describe the error message.
- For failing tests , mention what is supposed to happen.

6. Write the issue as a human would , using simple language without
excessive formatting.

7. Use concrete terms to describe the nature of the failure. Avoid vague
terms like "specific output" or "certain data".

8. INCLUDE test code to describe the bug but keep it brief and relevant.
Truncate or simplify tests longer than 5-6 lines.

9. Do not mention external files unless absolutely necessary.
10. Format code snippets using triple backticks.

The issue should include:
1. A clear and concise title
2. A description of the problem with detailed example buggy code
3. Expected behavior
4. Actual behavior or error message

Listing 3: Issue generation template

This approach enables us to generate high-quality synthetic issues that provide clear problem
statements for our training data, even for commits that lack human-written issues. Below
are examples of synthetic issues generated using our approach:

**Title :** Calling `load()` Before `draft()` Causes `draft()` to Fail for
JPEG Images

** Description :**
When generating a thumbnail for a JPEG image using the `thumbnail ()`

method , the method calls `load()` before `draft()`. This sequence
results in the `draft()` method returning `None `, which prevents the
thumbnail from being properly optimized.

** Example Code :**
```python
from PIL import Image

with Image.open("Tests/images/hopper.jpg") as im:
im.thumbnail ((64, 64))

```

** Expected Behavior :**

17



Preprint. Under review.

The `thumbnail ()` method should utilize the `draft()` method to optimize
the image size before loading , ensuring that the thumbnail is resized
correctly and efficiently.

** Actual Behavior :**
The `draft()` method returns `None ` because `load()` is invoked before it

. This prevents the thumbnail from being optimized , potentially
leading to incorrect thumbnail sizes or unnecessary memory usage.

Listing 4: Example synthetic issue for a PIL image thumbnail bug

**Title :** Unable to Register Route with Names Containing Both Dots and
Colons

** Description :**
After merging branch '0.18', attempting to register a route with a name

that includes both dots (`.`) and colons (`:`) results in a `
ValueError `. The recent changes were intended to allow route names to
be a sequence of Python identifiers separated by dots or colons , but
this combination is still causing issues.

** Example Code :**
```python
from aiohttp.web import UrlDispatcher , PlainRoute

def handler(request):
return 'Hello '

router = UrlDispatcher ()

# Attempting to register a route with both dots and colons in the name
route = PlainRoute('GET ', handler , 'test.test:test ', '/handler/to/path ')
router.register_route(route)
```

** Expected Behavior :**
Registering a route with a name like `'test.test:test '` should succeed

without errors , as the name follows the updated rules allowing
multiple identifiers separated by dots or colons.

** Actual Behavior :**
A `ValueError ` is raised with the message:
```
ValueError: Incorrect route name value , Route name should be a sequence

of python identifiers separated by dot or column
```
This prevents the registration of route names that include both dots and

colons , contrary to the intended flexibility introduced in the recent
commit.

Listing 5: Example synthetic issue for a route name validation bug

Patch Minimization. We identify that the ground-truth patches often contain irrelavant
code changes that are not required to fix the bug, often making modifications to style and
structure of the programs. We implement a patch-minimization approach to identify the
minimal set of code changes required to fix the bug by iteratively removing the code changes
and checking whether the tests still pass. This allows us to collect fine-grained signal for
evaluating localization capabilities of LLMS.

B SFT Training

Agent Details.

18



Preprint. Under review.

Issue + Code
Editing
Agent Patch

Trajectory

Figure 10: Code-editing agent architecture: The agent takes an issue description and code-
base as input and produces a patch that fixes the issue.

We use R2E-Gym to train a general-purpose prompting agent. In particular, we train our
code-editing agent on tasks from R2E-Gym, where given an executable environment E and
problem description D, the agent is asked to solve the provided issue using any means
necessary. Particularly, unlike (Orwall, 2024), we do not rely on the use of specialized
workflows. The agent is tasked to solve the entire task end-to-end, including writing its
own reproduction scripts, finding the bug, proposing a fix and then testing its correctness.
Similar to (Wang et al., 2024), the agent is also provided with a finish tool, allowing it to
submit a solution if it thinks it has completed the task.

Agent and Tools. Similar to (Aleithan et al., 2024; Wang et al., 2024), we adopt the traditional
REACT format (Yao et al., 2022) for agent-design. For AGENTHUB, we use a minimalistic set
of four tools to enable the agent to perform diverse SWE tasks; 1) file editor: for viewing
and editing files, 2) search tool: for searching a relevant term in a given file or folder, 3)
execute bash: allowing execution of non-interactive bash commands (e.g., for running test
scripts), 4) submit: for ending the current trajectory while returning expected outputs.No
internet or browser access is provided to the agent during the training process.

Data Curation. For training, we use supervised finetuning with rejection sampling using
trajectories from sonnet-3.5 model for supervision. To avoid contamination, we only use
a subset of R2E-Gym consisting of repos with no overlap with the SWE-Benchdataset.
The resulting subset (R2E-Gym-lite) consists of 4538 executable environments across 10
repositories (Figure 2). Overall, we collect a total of 3321 successful trajectories from 2048
unique test environments. For rejection sampling we use the unit tests from R2E-Gym
environments (both synthetic and existing). For each trajectory, we use a maximum of
N = 40 steps. Also, we limit the number of tokens per-trajectory to 32K max tokens. Finally,
we also use a maximum timeout of 10-min for the overall trajectory and 90 seconds for
each action execution, in order to avoid cases where the agent launches a long-running
background process. We collect all training data using a temperature of 0.2.

Training Setup and Hyperparameters. For training, we use the Qwen-2.5-Coder 7B, 14B
and 32B series as the base model for training SWE-agents on R2E-Gym. For training we
perform full SFT using the above collected trajectories using LLaMA-Factory (Zheng et al.,
2024). We train the overall model for a total of 2 epochs, batch size as 8 while using a
learning rate of 1e−5. The warmup ratio for training was set to 0.1. Due to computational
constraints, a maximum context length of 20K was used for training the agent. In future,
the use of context-parallelism can enable us to further push the performance when training
SWE-agents on more complex tasks requiring larger-context lengths.

C Inference Time Scaling

C.1 Execution-Based Testing Agents

Agent Details. We train a specialized testing-agent that generates reproduction test cases
to determine whether a candidate patch resolves the issue (i.e., whether the patch passes
the generated test suite). Specifically, we train the testing-agent (using QWEN-CODER-32B
as base-model) to generate a comprehensive test script containing M = 10 diverse tests
that cover various inputs, corner cases, etc. We use the same agent scaffold from Sec. 3 for
training the testing agent.

19



Preprint. Under review.

Issue + Code
Testing
Agent Test Patch

Trajectory

Figure 11: Testing agent architecture: The agent generates comprehensive test cases to verify
if a candidate patch resolves the issue.

Data Curation. For training, we use supervised finetuning using trajectories from
sonnet-3.5 model for supervision. Overall, we collect a total of 2203 test-generation trajec-
tories from sonnet (both positive and negative trajectories with minimal rejection sampling).
For each trajectory, we use a maximum of N = 40 steps. Also, we limit the number of tokens
per-trajectory to 20K max tokens. Finally, we also use a maximum timeout of 5-min for the
overall trajectory and 60 seconds for each action execution, in order to avoid cases where
the agent launches a long-running background process.

Training Setup and Hyperparameters. For training, we use the QWEN-CODER-32B model as
the base model. We then use the above collected training SFT trajectories to perform full
finetuning with the QWEN-CODER-32B model using LLaMA-Factory (Zheng et al., 2024). We
train the overall model for a total of 2 epochs, batch size as 8 while using a learning rate of
1e − 5. A maximum context length of 20K was used for training the agent. The warmup
ratio for training was set to 0.1.

In-Context Starter Code Demonstration. We provide the following in-context starter-code
demonstration (from the Django repository) to the testing agent.

import os
import django
from django.conf import settings
from django.db import models
from django.test import TestCase
from django.test.utils import setup_test_environment

# Configure Django settings before setup
os.environ.setdefault('DJANGO_SETTINGS_MODULE ', 'tests.test_sqlite ')

# Override settings
settings.configure(

DATABASES ={
"default": {

"ENGINE": "django.db.backends.sqlite3",
"NAME": "test.db",
"TEST": {

"NAME": "test.db",
},

}
},
INSTALLED_APPS =["tests"],
MIGRATION_MODULES ={"tests": None}, # Disable migrations for the

tests app
)

# Setup Django
django.setup()
setup_test_environment ()

# Define test models
class ExampleModel(models.Model):

example_char = models.CharField(max_length =255)
example_int = models.IntegerField ()

20



Preprint. Under review.

class Meta:
app_label = 'tests ' # Set the app_label to 'tests '

# Create the database tables
from django.core.management import call_command
call_command('migrate ', run_syncdb=True)

def add_test_data ():
""" Create test instances of the model """
ExampleModel.objects.create(example_char="Test␣1", example_int =1)
ExampleModel.objects.create(example_char="Test␣2", example_int =2)

# Add test data
add_test_data ()

Listing 6: Incontext Demonstration for Testing Agent

C.2 Execution-Free Verifiers

Trajectory
(Issue + React-
Loop + Patch)

Trajectory
Verifier YES/NO

Figure 12: Execution-free verifier architecture: The verifier predicts whether a patch is
correct based on the full trajectory without executing the code.

Verifier Details. In addition to the execution-based “testing agents”, we also explore the
execution-free outcome-supervised reward models (a.k.a verifiers) (Cobbe et al., 2021). In
particular, given a problem statement D, agent-trajectory T = {a1, o1, a2, o2, . . . , an, on} and
output patch O from the code-editing agent on the R2E-Gym environments, we train a
Qwen2.5-Coder-14B model (Yang et al., 2024a) to output a scalar score value sEF ∈ [0, 1]
predicting the probability of output patch being correct. Specifically, following (Pan et al.,
2024) we output the correctness of each patch through output tokens YES (correct) and NO
(incorrect). The overall reward score is then computed by normalizing the relative proba-
bility of YES token as r = P(YES)/(P(YES) + P(NO)), where P(YES) and P(NO) are estimated
through the log-probabilities of the corresponding token predictions.

Training Data. We first use the trajectories collected for code-editing agent training §3 in
order to obtain a collection of positive and negative samples for verifier training. Following
the best configuration from (Pan et al., 2024), we also generate on-policy trajectories using
our trained 32B model. We then filter the collected samples to have an equal number
of positive and negative samples. The overall dataset consists of 5700 total trajectories
including both positive and negative samples. For training, we follow the template from
(Pan et al., 2024), asking the LLM model to predict the output as YES for positive and NO
for negative trajectories.

Training Setup and Hyperparameters. For training, we use the QWEN-CODER-14B model
as the base model. We then use the above collected training SFT trajectories to perform
finetuning using LLaMA-Factory (Zheng et al., 2024). Similar to (Pan et al., 2024), we
perform LORA finetuning using a rank of 64. We train the overall model for a total of 2
epochs, batch size of 8 while using a learning rate of 1e − 5. A maximum context length of
32K was used for training the agent. The warmup ratio for training was set to 0.1.

21



Preprint. Under review.

C.3 Execution-Based Analysis

In our analysis of execution-based testing agents, we focus on two key metrics: distinguisha-
bility and toxicity of generated tests. These metrics help us understand the effectiveness
and limitations of execution-based verification.

Distinguishability Rate. The distinguishability rate measures a test’s ability to differentiate
between correct and incorrect patches. A test is considered ”distinguishing” if it behaves
differently when applied to correct patches versus incorrect patches. In practical terms, this
means the test can help us identify which patches are correct and which are not.

For example, consider a test that passes for all correct patches but fails for all incorrect
patches—this test has perfect distinguishability. Conversely, a test that passes (or fails) for
both correct and incorrect patches provides no useful signal for distinguishing between
them. Mathematically, for a given test t and a set of patches P divided into correct patches
Pc and incorrect patches Pi, we compute distinguishability metric as:

Distinguish(t) = 1

[
max
p∈Pi

Pass(p, t) ̸= max
p∈Pc

Pass(p, t)
]

(3)

where Pass(p, t) indicates whether patch p passes test t, and 1[·] is the indicator function.
This formula checks whether the best-performing incorrect patch behaves differently on the
test compared to the best-performing correct patch. The distinguishability rate for a set of
tests T is then the average distinguishability across all tests:

DistinguishRate(T) =
1
|T| ∑

t∈T
Distinguish(t) (4)

In our analysis, we found that most generated tests have low distinguishability
rates—typically less than 20% of tests can effectively differentiate between correct and
incorrect patches. This limitation significantly impacts the ability of execution-based verifi-
cation to identify the best patches, especially as the number of candidate patches increases.

Toxicity Rate. We define toxic tests as those that incorrectly favor incorrect patches over
correct ones. The toxicity rate is the proportion of tests that exhibit this behavior. Mathemat-
ically:

Toxic(t) = 1

[
max
p∈Pi

Pass(p, t) > max
p∈Pc

Pass(p, t)
]

(5)

The toxicity rate for a set of tests T is:

ToxicityRate(T) =
1
|T| ∑

t∈T
Toxic(t) (6)

While toxic tests are generally rare, they can significantly impact verification reliability
when present, with toxicity rates reaching up to 10% for some problems. These findings
highlight the importance of generating diverse, high-quality tests and the value of combining
execution-based verification with other approaches, such as execution-free verifiers, to
achieve more robust results.

C.4 Execution-Free Analysis

Figure 13 shows the limitations of the execution-free verifier.

D Example Testing Agent Outputs

This section provides examples of test cases generated by our approach.

22



Preprint. Under review.

Since we've:
1. Successfully reproduced the issue
2. Implemented a fix
3. Verified the fix works
4. Ensured edge cases are handled
5. Maintained backward compatibility

I believe we can now submit this as the
solution:

<function=finish >
<parameter=command >submit </parameter >
<parameter=result >Fixed the `

_check_homomorphism ` function ...

[ASSISTANT]
Great! The fix works. Let's analyze what we

did:

1. We identified the original code was failing
because

it was using a `.inverse ()` method directly
, which

doesn 't exist for permutations.
2. We fixed the issue by:

- Using `**-1` for inverses , which works
for both

Permutations and FreeGroupElements

[ASSISTANT]
The changes look good. I've made the following

improvements:
1. Simplified logic to check both the

generator and inverse
2. Used the `**-1` operator for Permutation

and FreeGroupElement
3. Maintained robust handling of inverted

generators

Let's run the reproduce script again:

<function=execute_bash >
<parameter=cmd >python reproduce_issue.py </

parameter >
</function >
[/ ASSISTANT]

[USER]
Exit code: 0
Execution output of [execute_bash ]:
[STDOUT]

Testing with DihedralGroup (3):
SUCCESS: Homomorphism created successfully

Testing with SymmetricGroup (3):
SUCCESS: Homomorphism created successfully

Figure 13: Analyzing limitations of execution-free verifiers. Qualitative visualization
analyzing top k = 4 sliding windows over agent trajectory (refer §4.2) with highest mean
attention score (sympy sympy-24443: SWE-Bench). We observe that the RM can be biased
by the agent thought / actions, instead of relying on the final output patch.

Figure 14: Pass@K plot for our agent and using Agentless tests respectively.

D.1 Example 1: SymPy Relational Parsing Tests

The following example shows a truncated test suite for validating relational parsing in
SymPy, demonstrating our approach’s ability to generate multiple test cases. This test was
generated to address the issue in SymPy PR #24661, which fixes relational parsing in the
SymPy library.

from sympy import Lt, Gt, Le, Ge, Eq, Ne

def test_relational_parsing ():
# Test case 1: Basic less than operation
try:

result = parse_expr('1 < 2', evaluate=False)
expected = Lt(1, 2, evaluate=False)
if str(result) == str(expected):

print("Test Case 1: Issue resolved")
else:

23

https://github.com/sympy/sympy/pull/24661


Preprint. Under review.

print("Test Case 1: Issue reproduced")
except Exception as e:

print("Test Case 1: Other issues")

# Test case 2: Greater than operation
try:

result = parse_expr('3 > 2', evaluate=False)
expected = Gt(3, 2, evaluate=False)
if str(result) == str(expected):

print("Test Case 2: Issue resolved")
else:

print("Test Case 2: Issue reproduced")
except Exception as e:

print("Test Case 2: Other issues")

# ... [6 more test cases omitted for brevity] ...

# Test case 9: Chained comparisons
try:

result = parse_expr('1 < x < 2', evaluate=False)
if isinstance(result , bool):

print("Test Case 9: Issue reproduced")
else:

print("Test Case 9: Issue resolved")
except Exception as e:

print("Test Case 9: Other issues")

Listing 7: Test cases for SymPy relational parsing (truncated). Successfully detects incorrect
code from correct code.

D.2 Example 2: Django Model Choice Field Validation Tests

The following truncated example demonstrates tests for Django’s ModelChoiceField valida-
tion with proper setup and teardown code. This test was generated to address the issue in
Django PR #13933, which improves error messages in ModelChoiceField validation.

from django.forms import ModelChoiceField , ModelMultipleChoiceField
from django.db import models
from django.core.exceptions import ValidationError
from django.test import TestCase
from django.db import connection

# Create a simple test model
class TestModel(models.Model):

name = models.CharField(max_length =100)

def __str__(self):
return self.name

class Meta:
app_label = 'test_app '

def setup_test_environment ():
# Create the test table
with connection.schema_editor () as schema_editor:

schema_editor.create_model(TestModel)

# Create some test data
TestModel.objects.create(name="Option 1")
TestModel.objects.create(name="Option 2")
TestModel.objects.create(name="Option 3")

def cleanup_test_environment ():

24

https://github.com/django/django/pull/13933


Preprint. Under review.

# Drop the test table
with connection.schema_editor () as schema_editor:

schema_editor.delete_model(TestModel)

def test_modelchoice_validation ():
try:

# Test Case 1: Basic invalid choice for ModelChoiceField
field = ModelChoiceField(queryset=TestModel.objects.all())
try:

field.clean (999) # Non -existent ID
print("Test Case 1: Issue resolved")

except ValidationError as e:
if "999" not in str(e): # Value should be in error message

print("Test Case 1: Issue reproduced")
else:

print("Test Case 1: Issue resolved")

# ... [4 more test cases omitted for brevity] ...

# Test Case 6: Valid choice
obj = TestModel.objects.first()
try:

result = field.clean(obj.id)
if result == obj:

print("Test Case 6: Issue resolved")
else:

print("Test Case 6: Issue reproduced")
except ValidationError:

print("Test Case 6: Issue reproduced")
except Exception as e:

print(f"Unexpected error: {e}")

Listing 8: Test cases for Django ModelChoiceField validation (truncated). Most test cases
error due to unhandled exceptions and do not distinguish.

E Agent Trajectory Example

This section provides a visual example of an agent’s trajectory while solving a software
engineering task. The sequence shows the step-by-step process from problem statement to
solution, demonstrating how our agent approaches and solves real-world programming
issues.

This trajectory example illustrates several key aspects of our agent’s problem-solving ap-
proach:

• Systematic Exploration: The agent methodically explores the codebase to under-
stand the context and locate the issue.

• Root Cause Analysis: Rather than addressing symptoms, the agent identifies the
underlying cause of the problem using test issue.py.

• Solution Development: The agent formulates a clear plan before implementing
changes.

These capabilities enable our agent to effectively tackle complex software engineering tasks
that require deep understanding of code structure, programming language semantics, and
software design principles.

25



Preprint. Under review.

Figure 15: Problem statement presented to the agent, describing the issue that needs to be
resolved.

26



Preprint. Under review.

(a) Step 1: Initial analysis and exploration (b) Step 2: Detailed Exploration

(c) Step 3: Reproducing the issue (d) Step 4: Running reproduction tests

(e) Step 5: Implementing the fix (f) Step 6: Verifying the fix

Figure 16: Short successful agent trajectory (using our 32B model) showing the step-by-step
process of solving a software engineering task. The agent analyzes the problem, identifies
the root cause, implements a solution, tests it, and verifies that it resolves the issue.

27


	Introduction
	R2E-Gym: Procedural Synthetic Data Generation
	Training SWE-Agents using R2E-Gym Environments
	Results and Analysis

	Efficient Inference Time Scaling With Hybrid Verifiers
	Exploring Different Axes for Training Verifiers
	Comparative Analysis of Execution-Based and Execution-Free Verifiers
	Hybrid Inference Time Scaling
	Ablation Studies on Hybrid Verification Design

	Related Work
	Conclusion
	Dataset Details
	SFT Training
	Inference Time Scaling
	Execution-Based Testing Agents
	Execution-Free Verifiers
	Execution-Based Analysis
	Execution-Free Analysis

	Example Testing Agent Outputs
	Example 1: SymPy Relational Parsing Tests
	Example 2: Django Model Choice Field Validation Tests

	Agent Trajectory Example

